
PHYSICAL REVIEW E FEBRUARY 1997VOLUME 55, NUMBER 2
Variational calculation for maximal heat transport due to the ion-temperature gradient

Chang-Bae Kim
Physics Department, Soong Sil University, Seoul, Korea 156-743

~Received 22 July 1996!

Variational principle for the maximal heat transport due to turbulence driven by the ion-temperature gradient
is studied. Plasma is modeled as a fluid in the slab geometry and energy conservation is enforced for the
resulting optimal state. Bounding curve and the profiles of the fluctuations are plotted. Bounds are argued to be,
in a limited fashion, of the same order as the true values.@S1063-651X~97!11502-1#

PACS number~s!: 52.25.Fi, 52.35.Ra, 52.35.Qz, 52.55.Dy
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I. INTRODUCTION

One of the outstanding problems in fusion experiment
the presence of the anomalous transport of the plasma
ergy. Much effort has been put into characterizing source
the enhanced transport and of figuring out how to supp
them. An ion-temperature gradient~ITG! @1–3# has been sus
pected as a prime cause of driving the turbulence becaus
enhanced confinement is achieved with peaked density
files @4,5#. Many theoretical and computational works ha
been devoted to investigating the stability criteria and
turbulent transport resulting from theh i instability. @6–9#
Either one models the plasma as two fluids with the Lan
damping simulated one way or another@10# or, if one wants
a more sophisticated approach, one adopts the kinetic m
of the plasma. Computationally, with the advent of the
calledd f algorithm, the numerical simulations are perform
with relatively low noise and parallel processing makes
possible to run with the parameters, which are close to
experimental values. In the current work, though, we do
report the result of the numerical simulation of the mod
equations. Rather, the result of an approach is presen
which is somewhat different from the existing works: an u
per bound for the turbulent heat flux in the steady state
computed via the variational principle that incorporates
physical constraint of the energy conservation. It may not
the real solution of the plasma dynamics if the state of ma
mal heat transport is not the true state. However, it certa
provides a useful means in predicing the level of the tra
port and serves as a benchmark. The method, which is o
called optimum theory@11#, has been successfully applied
many problems in neutral fluids@12# and the plasmas, suc
as the heat and the momentum transport, passive advec
and magnetic-field reversal@13–15#. In those problems, up
per bounds are found to be reasonably close to the true
ues, even when the energy conservation is the only const
that is considered. Since, in tokamak experiments, prevai
physics are different in many regions, it is difficult to encom
pass all the important physics in constraints. In this work
slice inside the tokamak is cut and the variational princi
of local turbulent transport due to ITG is formulated. In th
paper we introduce the model equations for the ITG tur
lence and formulate the variational principle. The result
Euler-Lagrange equations are also derived. The bound
curve of the heat flux in terms ofh i and the eigenfunctions
are also presented and we summarize the result.
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The model fluid equations to be used in the work are@16#

05
]

]t
~f2¹'

2c!1
]f

]y
1¹ iu1m'¹'

4c

2¹'•@b•~¹f3¹!¹c#, ~1!

05
]u

]t
1¹ ic1b•~¹f3¹u!2n'¹'

2u2n i¹ i
2u, ~2!

05
]

]t
~p2tGf!1tK̄

]f

]y
2x'¹'

2p

2x i¹ i
2p1b•~¹f3¹p!. ~3!

In Eqs.~1!–~3!, the electric potential, the fluid velocity alon
the field lines, and the plasma pressure are denoted asf, u
and p and c8f1p and b represents the direction of th
magnetic field. The subscriptsi and' denote the compo-
nents that are parallel to or perpendicular to the field li
respectively. Two of the dissipation parametersn i and x i
primitively model the effect of the Landau damping and th
are set to be of order one. Other parameters in Eqs.~1!–
~3! are t5Ti /Te , K̄5K2G, K5h i11, whereh i is the
measure of the ITG, andG is the adiabatic gas constant. Th
units of Eqs.~1!–~3! are the gyroradiusrs of the ion, with
the electron temperature and the density-gradient len
scaleLn for the space, perpendicular and parallel to the fi
line, respectively,Ln /vs for the time,e/Te for the electric
potential, andrs /Ln for the size of the perturbations. For th
analysis, zero boundary conditions in thex direction and the
periodic conditions in they andz directions. The major point
of Eqs.~1!–~3! is that they yield the level of the turbulenc
comparable to the simulation results of the more sophi
cated kinetic models. This is the main reason that we cho
Eqs. ~1!–~3! as our model though they lack the simulat
effect of the gyro-Landau damping. The same method,
principle, can be applied to the models of more comp
nature without further conceptual complications.

In order to obtain the Euler-Lagrange equations we p
ceed to obtain the flux conservation by taking the average
Eqs.~1!–~3! over they andz directions. In the steady state
after the integration overx and upon using the zero bounda
conditions, Eqs.~1!–~3! yield
2048 © 1997 The American Physical Society



n
r
ai
g
s

ns
di

n
d
a

o

e

elds

of
ions
ver
rea-

e
a-
the

the
ef-
d
e
t-

e

55 2049BRIEF REPORTS
d2^f&
dx2

52x'
21 ]Q

]x
1m'

21DW~x!, ~4!

d^u&
dx

5n'
21DR~x!, ~5!

d^p&
dx

5x'
21DQ~x!. ~6!

In the above, the heat fluxQ and the Reynolds stressesR and
W are defined as

Q82 K p ]f

]y L , R82 K p ]u

]y L , W82 K ]~f1p!

]x

]f

]y L
~7!

andDQ8Q2Q̄, as the difference of they-z average from
the volume average. Equations~4!–~6! show the relations
between the mean profiles and the fluxes of the fluctuatio

In this work, closure of the moments is achieved rigo
ously upon using the boundary conditions. First, we obt
the equations for the fluctuations by subtracting the avera
equations from Eqs.~1!–~3!. Then, from them, one obtain
the conservation law of energyE,

E8
1

2 F uf̃u21u¹'c̃u21uũu21
1

Gt
u p̃u2G , ~8!

by multiplying by f̃, ũ, and p̃, respectively, by integrating
over x and by adding up,

Q̄5
G

K
~N1D!. ~9!

In Eq. ~9!, we define

N5
1

x'Gt
uDQu21

1

m'

uDWu21
1

n'

uDRu2, ~10!

which is the fourth-order quantity in terms of the fluctuatio
and represents the energy-production rate due to the gra
of the mean profiles, and

D5m'u¹'
2 ~f̃1 p̃!u21n'u¹'ũu21n iu¹ iũu2

1
x'

Gt
u¹'p̃u21

x i

Gt
u¹ ip̃u2, ~11!

which denotes the loss of energy by various dissipatio
Since the left-hand side of Eq.~9! is the second order an
N is fourth order, it is obvious that the size of the fluctu
tions cannot be infinite andQ̄ is of finite quantity.

Thenaivechoice of the variational functional would be t
maximize the heat flux under the condition of Eq.~9!,

A85Q̄1l8F Q̄2
G

K
~N1D!G , ~12!

where l8 is the undetermined Lagrange multiplier. Th
variational derivatives of typical terms in Eq.~12! are
s.
-
n
ed

ent

s.

-

dQ̄

df̃~x
5

] p̃

]y
,

duDQu2

df̃~x!
52DQ~x!

] p̃

]y
~13!

and, thus, the corresponding Euler-Lagrange equation yi

ũ50. ~14!

Since there is no motion along the field lines, the effect
magnetic shear does not exist and, thus, the eigenfunct
are not localized near the rational surface but spread all o
the place and upper bound for the heat flux becomes un
sonably large.

In order to improve the shortcomings one must includ
other constraints that keep the important effects of the m
gentic shear intact. As one way of doing so, we pursue
following: Upon averaging Eq.~2! and using Eq.~5!, we
obtain another condition,

Ḡ5n'
21uDRu21n'u¹'uu21n iu¹ iuu2, ~15!

where

G~x!82^u¹ i~f1p!& ~16!

expresses the energy supply to the parallel motion due to
electric field and the pressure gradient. Magnetic shear
fects are apparent inḠ and the last term on the right-han
side of Eq.~15! as the gradient along the field lines. Now, th
new variational principle ismaximize the heat flux that sa
isfies the conditions Eqs. (9) and (15).The variational func-
tional is

A5Q̄1l1F Q̄2
G

K
~N1D!G

1l2S Ḡ2
1

n'

uDRu22n'u¹'uu22n iu¹ iuu2D , ~17!

where the constantsl1 andl2 are yet to be determined.
After the variational differentiations, the Euler-Lagrang

equations follow as

05m'¹'
2C1¹ iu2z

]p

]y
1~x'Gt!21DQ

]p

]y
2n21DR

]u

]y

1m'
21DW

]2

]x]y
~2f1p!, ~18!

05n'¹'
2u1n i¹ i

2u2¹ i~f1p!1n'
21DR

]f

]y
, ~19!

05m'¹'
2C1¹ iu1z

]f

]y
2

x'

Gt
¹'
2p2

x i

Gt
¹ i
2p

2~x'Gt!21DQ
]f

]y
1m'

21DW
]2f

]x]y
. ~20!

In Eqs.~18!–~20!, the new shorthanded parameters are
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z8
K~11l1!

2l1G
,

l15
KQ̄

G F 1

x'Gt
uDQu21

1

m'

uDWu22
1

n'

uDRu2G21

,

C8¹'
2 ~f1p!, ~21!

wherez andl1 are obtained after Eqs.~18!–~20! are multi-
plied by f̃, ũ, andp̃, correspondingly, and the volume ave
ages are taken upon using Eqs.~9! and ~15!.

II. RESULTS AND DISCUSSION

The critical valueh ic , below which perturbations of ar
bitrary size vanish monotonically in time, is computed.
serves two purposes: Firstly, physically it is important
know the value ofh ic and the critical state; secondly, for
value ofh i that is slightly bigger thanh ic , one may use the
critical profiles as initial input in the iterative scheme of t
numerical procedure. The above mentionedh ic is the value
that determines the energy stability criterion and it is sma
than the often calculated value of the linear stability. T
critical state is obtained from Eqs.~18!–~20! by setting the
nonlinear terms to vanish,l1→` andz→K/2G. The parallel
gradient in the slab is¹ i5kz1skyx, wherekz is the dif-
fernce of the wave vector in thez ~toroidal! direction to that
of the mode-rational surface andx is the ~radial! distance
from the rational surface. The eigenvalue equations are, t
Fourier transformed iny andz and are solved by the shoo
ing method varying the modes (ky ,kz). Out of the many
eigenvalues ofz, the least value is chosen in computing t
critical valueh ic and the corresponding mode number ge
erates the critical state of the energy stability. After the cr
cal state is identified, we proceed for higher values ofh i by
iteratively computing the eigenfuctions starting from t
critical profiles. As the solver, we use the routineDVCPR of
the International Mathematics and Statics Library~IMSL!,
which can vary the mesh size with an error-correct
mechanism.

The parameters used for the analysis areG52, t51,
s50.1, x i5n i51 and the size of the plasma
240<x<40, 0<y<10p and 0<z<7.5p, which are the
same as those in Ref.@16#. In the case of
x'5n'5m'50.01, h ic'20.884 and for the case o
x'5n'5m'50.5h ic'20.563. For both cases, the critic
mode is (m,n)5(1,0), which means that the mode numb
along z is the same as that of the mode-rational surfa
These values are much smaller than both the typical exp
mental values and the critical value of the linear stabili
which are of order 1. This is not surprising because of
more stringent requirement of the energy stability than
linear stability.

For the values ofh i that are larger thanh ic , the nonlinear
terms in Eqs.~18!–~20! are no longer negligible and, thu
many other modes contribute to the evolution of one mo
through the mode couplings of the nonlinear interactio
However, in the present work, we keep only one eigenm
(m,n)5(1,0). The reason is more practical than anyth
else—even for this case, much computer memory and tim
r
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needed. Hence, one may argue that our result is only ac
tible for the h i ’s close toh ic . Yet, with this limitation in
mind, one can still estimate reasonably, after the extrap
tion of the present calculation, by realizing that, in earl
works of similar nature in the fluids, single-mode study pr
vides a certain fruitful result. Before we move on, we wou
like to make a remark on Eqs.~18!–~20!. Sincef andp are
even inx and u is odd,Q is even andR andW are odd.
These symmetries lead toR̄5W̄50 and to the observation
that ^p& is odd, being positive forx.0 and negative for
x,0 from Eq.~6!. This is good because, if the equilibrium
pressure is higher to the left of the rational surface, tur
lence operates in such a way as to reduce the pressure
dient. Figure 1 shows the bounding curve of the volum
averaged heat flux versush i for the cases ofx'50.5 and
x'50.01. As the value ofh i increases beyondh ic , it be-
comes more and more difficult to have the convergent so
tion because of the formation of the boundary layer. It is
be noted that the volume averages are taken over part o
volume where the heat flux is appreciable, that is 50%~in the
case ofx'50.5) or 20%~in the case ofx'50.01) of the
box size. Forh i about 0.13 higher than the critical valu

FIG. 1. Bounding curve of the upper bound for the heat flux a
h i . Squares are for the case ofx'50.01 and the circles for
x'50.5. The unit of the heat flux is (rs /Ln

2)(cTe /eB) normalized
to pressure.

FIG. 2. Typical profiles of the fluctuations of the potential~solid
curve! and the pressure~dotted curve!.



s a
l

l
rt
m
h

a

u
a

ki-
at
ss.

l
hoi
the

a-

55 2051BRIEF REPORTS
whenx'50.01, the upper bound is about 331024(rs /Ln
2)

3(cTe /eB) normalized in terms of the center pressure. A
reference for the case whenh i52, the direct numerica
simulation reports that the volume-averaged heat fluxQ̄'1
@16#. Although, at present,h i is far from the experimenta
value and comparing the upper bound to the real transpo
seemingly unrealistic, one can conclude positively, in a li
ited fashion, that the upper bound would not be far off t
true value as the calculation of largerx' indicates. In Fig. 2,
typical eigenfunctions of the potential and the pressure
plotted.

Extension of the present work is possible with better n
merical algorithms and the application of the present form
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ism to models of a more complex nature, either fluid or
netic, is left to a future work. Lower bound for the he
transport may also be interesting and the work is in progre
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