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Variational calculation for maximal heat transport due to the ion-temperature gradient
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Variational principle for the maximal heat transport due to turbulence driven by the ion-temperature gradient
is studied. Plasma is modeled as a fluid in the slab geometry and energy conservation is enforced for the
resulting optimal state. Bounding curve and the profiles of the fluctuations are plotted. Bounds are argued to be,
in a limited fashion, of the same order as the true val[®%063-651X97)11502-1

PACS numbg(s): 52.25.Fi, 52.35.Ra, 52.35.Qz, 52.55.Dy

I. INTRODUCTION The model fluid equations to be used in the work [d/€]
One of the outstanding problems in fusion experiments is 9 I
the presence of the anomalous transport of the plasma en- 0= E((b—Vf )+ W“LVHU”LMVj‘W
ergy. Much effort has been put into characterizing sources of
the enhanced transport and of figuring out how to suppress -V, -[b- (VX V)Vy], 1)

them. An ion-temperature gradieiitG) [1-3] has been sus-

pected as a prime cause of driving the turbulence because the

enhanced confinement is achieved with peaked density pro- = a_u+v Y+b- (VX Vu)—v, Viu—yViu, (2)
files [4,5]. Many theoretical and computational works have at H . ¥
been devoted to investigating the stability criteria and the

turbulent transport resulting from the; instability. [6—9]

14 —d
Either one models the plasma as two fluids with the Landau 0=E(p— T'¢)+ 7K {9_¢ - XL Vf p
damping simulated one way or anott&0] or, if one wants y
a more sophisticated approach, one adopts the kinetic model _XHVfPJF b- (VX Vp). 3)

of the plasma. Computationally, with the advent of the so-

called 5f algorithm, the numerical simulations are performed . ) ) .

with relatively low noise and parallel processing makes it'n EGs-(1)—(3), the electric potential, the fluid velocity along
possible to run with the parameters, which are close to thé€ field lines, and the plasma pressure are denotep as
experimental values. In the current work, though, we do no@nd P and y=¢+p andb represents the direction of the
report the result of the numerical simulation of the modelMagnetic field. The subscripfsand L denote the compo-
equations. Rather, the result of an approach is presenteB€nts that are parallel to or perpendicular to the field line,
which is somewhat different from the existing works: an up-réspectively. Two of the dissipation parametefsand

per bound for the turbulent heat flux in the steady state i®rimitively model the effect of the Landau damping and they
computed via the variational principle that incorporates thed'® Set to be of order one. Other parameters in Efjs:
physical constraint of the energy conservation. It may not bé3) are 7=T;/T,, K=K-T', K=7;+1, where z; is the

the real solution of the plasma dynamics if the state of maximeasure of the ITG, anl is the adiabatic gas constant. The
mal heat transport is not the true state. However, it certainlynits of Egs.(1)—(3) are the gyroradiug, of the ion, with
provides a useful means in predicing the level of the transthe electron temperature and the density-gradient length
port and serves as a benchmark. The method, which is oftegcalel, for the space, perpendicular and parallel to the field
called optimum theory11], has been successfully applied to line, respectivelyL /v for the time,e/T, for the electric
many problems in neutral fluidd2] and the plasmas, such potential, ancp4/L, for the size of the perturbations. For the
as the heat and the momentum transport, passive advectiomyalysis, zero boundary conditions in thelirection and the
and magnetic-field reversfl3—15. In those problems, up- periodic conditions in thg andz directions. The major point
per bounds are found to be reasonably close to the true vadf Egs.(1)—(3) is that they yield the level of the turbulence
ues, even when the energy conservation is the only constraiabmparable to the simulation results of the more sophisti-
that is considered. Since, in tokamak experiments, prevailingated kinetic models. This is the main reason that we choose
physics are different in many regions, it is difficult to encom-Egs. (1)—(3) as our model though they lack the simulated
pass all the important physics in constraints. In this work, aeffect of the gyro-Landau damping. The same method, in
slice inside the tokamak is cut and the variational principleprinciple, can be applied to the models of more complex
of local turbulent transport due to ITG is formulated. In this nature without further conceptual complications.

paper we introduce the model equations for the ITG turbu- In order to obtain the Euler-Lagrange equations we pro-
lence and formulate the variational principle. The resultingceed to obtain the flux conservation by taking the averages of
Euler-Lagrange equations are also derived. The boundinggs.(1)—(3) over they andz directions. In the steady state,
curve of the heat flux in terms of; and the eigenfunctions after the integration over and upon using the zero boundary
are also presented and we summarize the result. conditions, Egs(1)—(3) yield
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dX¢)  _,0Q 5Q b 8AQP Jp
TOE T XL gy AW, 4 5o 7y WZZAQ(X)W (13
dé‘:(> - “IAR(x), (5) and, thus, the corresponding Euler-Lagrange equation yields
u=0. (14
d(p)
Tdx XL AQ(x). 6) Since there is no motion along the field lines, the effect of

magnetic shear does not exist and, thus, the eigenfunctions
In the above, the heat fluQ and the Reynolds stressRsand  are not localized near the rational surface but spread all over

W are defined as the place and upper bound for the heat flux becomes unrea-
sonably large.
@ ﬁ_U We — I p+p) @ In order toimprove the shortcomings one must include
Q=-\p ay P3 ay B ax  ay other constraints that keep the important effects of the ma-

(7) gentic shear intact. As one way of doing so, we pursue the
_ following: Upon averaging Eq(2) and using Eq.(5), we
and AQ=Q—Q, as the difference of thg-z average from obtain another condition,
the volume average. Equatiori4)—(6) show the relations
betwee_n the mean profiles and the quxes. of thg fluctua_ltions. G= v YARZ+ v, |V, u]?+ V|\|VH“|2’ (15)
In this work, closure of the moments is achieved rigor-
ously upon using the boundary conditions. First, we obtain,here
the equations for the fluctuations by subtracting the averaged
equations from Eqs(1)—(3). Then, from them, one obtains
the conservation law of energ

x)=—(uVy(¢+p)) (16)

1 I expresses the energy supply to the parallel motion due to the
£=5 |2+ |V, ]2+ [u]?+ F—|E|2 : (8)  electric field and the pressure gradient. Magnetic shear ef-
T fects are apparent i and the last term on the right-hand
side of Eq.(15) as the gradient along the field lines. Now, the
new variational principle isnaximize the heat flux that sat-
isfies the conditions Egs. (9) and (13he variational func-
tional is

by multiplying by’quS, U, andp, respectively, by integrating
over x and by adding up,

Q= _(N+D). 9

Xl =

A=Q+)\,

— T
Q- (N+D)

In Eq. (9), we define

— 1 2 2 2
2 G—Z|AR| —v, [V ul*=y[Vu|*], (17)

_ 2, L awies LIARE
N |AQ| + |AW| + |AR| , (10
My v,

x.I'r

which is the fourth-order quantity in terms of the fluctuationswhere the constants, and\, are yet to be determined.
and represents the energy-production rate due to the gradient After the variational differentiations, the Euler-Lagrange
of the mean profiles, and equations follow as

D:Mﬂvf(g"*"ﬁ”z*‘ v |V, U+ V\I|VHG|2

ap _
ozmquurv“u—gwﬂh )" 1AQ——V 1ARW

X = X =
+ VB + SV R, (1D P
+,LLJ_ AWm(Zgb'f'p), (18)
which denotes the loss of energy by various dissipations.
Since the left-hand side of E9) is the second order and i
N is fourth order, it is obvious that the size of the fluctua-0=v, V2u+ VHVHU Vi(p+p)+v, AR—y (19

tions cannot be infinite an@ is of finite quantity.
Thenaivechoice of the variational functional would be to

maximize the heat fl nder the condition of , P X1 X
imiz ux u ition of E€) 0=p, V2 ‘lf+VHu+§——F—Tle 1“‘ v2p
— — T
=Q+\'|Q—=(N+D)|, (12 92
K ~(x.I'n)~ 1AQ—¢+M w2 (20

axay’

where N\’ is the undetermined Lagrange multiplier. The
variational derivatives of typical terms in E(L2) are In Egs.(18)—(20), the new shorthanded parameters are
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L K(1+\y) 1x10°3
2\ ]
o 1x10'1-§
KQ[ 1 1 1 -1 ]
=—| ——|AQ|?+ —|AW|>*— —|AR|? .2 |
)\1 r XLFTl Q| /-LL| | VLl | ’ 1)(102—;
o ] -
Y=Vi(¢+p), (22) 1x10°% x=03
where{ and\, are obtained after Eq$18)—(20) are multi- 1x10'4-§ ;go_m
plied by ¢, U, andp, correspondingly, and the volume aver- ] :
ages are taken upon using E¢®). and(15). xS+
-1 0.5 0 0.5 1
n,
Il. RESULTS AND DISCUSSION !
The critical values;,;, below which perturbations of ar- FIG. 1. Bounding curve of the upper bound for the heat flux and

bitrary size vanish monotonically in time, is computed. It 7i- Squares are for the case gf =0.01 and the circles for
serves two purposes: Firstly, physically it is important tox.=0.5. The unit of the heat flux isp{/L7)(cT/eB) normalized
know the value ofy;. and the critical state; secondly, for a 0 Pressure.

value of 5, that is slightly bigger tham,;, one may use the

critical profiles as initial input in the iterative scheme of the _

numerical procedure. The above mentionggd is the value N€eded. Hence, one may argue that our result is only accep-
that determines the energy stability criterion and it is smallefiPle for the 7;'s close to7;c. Yet, with this limitation in

than the often calculated value of the linear stability. TheMind, one can still estimate reasonably, after the extrapola-

critical state is obtained from Eq&L8)—(20) by setting the tion of the present calculation, by realizing that, in earlier
nonlinear terms to vanish, — and{— K/2I'. The parallel works of similar nature in the fluids, single-mode study pro-
gradient in the slab i& =k, +skx, wherek, is the dif- vides a certain fruitful result. Before we move on, we would

fernce of the wave vector in the(toroida)) direction to that ke to make a remark on Eqgl8)—(20). Since¢ andp are
of the mode-rational surface andis the (radia) distance €Ven inx andu is odd,Q is even andR and W are odd.
from the rational surface. The eigenvalue equations are, theAhese symmetries lead ®=W=0 and to the observation
Fourier transformed ity andz and are solved by the shoot- that (p) is odd, being positive fox>0 and negative for
ing method varying the modesk(,k,). Out of the many x<0 from_ Eq_.(6). This is good becausg, if the equilibrium
eigenvalues of, the least value is chosen in computing thePressure is higher to the left of the rational surface, turbu-
critical value 7. and the corresponding mode number gen-lence operates in such a way as to reduce the pressure gra-
erates the critical state of the energy stability. After the criti-dient. Figure 1 shows the bounding curve of the volume-
cal state is identified, we proceed for higher values;oby ~ averaged heat flux versug for the cases of, =0.5 and
iteratively computing the eigenfuctions starting from thex. =0.01. As the value ofy; increases beyond;, it be-
critical profiles. As the solver, we use the routinecpr of ~ comes more and more difficult to have the convergent solu-
the International Mathematics and Statics LibrayiSL),  tion because of the formation of the boundary layer. It is to
which can vary the mesh size with an error-correctionbe noted that the volume averages are taken over part of the
mechanism. volume where the heat flux is appreciable, that is 30%he

The parameters used for the analysis Bre2, r=1, case ofy, =0.5) or 20%(in the case ofy, =0.01) of the
s=0.1, xj=»=1 and the size of the plasma is box size. Forn; about 0.13 higher than the critical value
—40<x=<40, O<y=<10w and 0<z=<7.57, which are the
same as those in Ref[16]. In the case of 8-
x.=v,=u,=0.01, 5,~—0.884 and for the case of ]
x.=v,=u, =0.575,.~—0.563. For both cases, the critical
mode is (,n)=(1,0), which means that the mode number
along z is the same as that of the mode-rational surface.
These values are much smaller than both the typical experi-
mental values and the critical value of the linear stability,
which are of order 1. This is not surprising because of the
more stringent requirement of the energy stability than the
linear stability.

For the values ofy; that are larger tham;. , the nonlinear

Potential, Pressure

terms in Egs(18)—(20) are no longer negligible and, thus, S S T
many other modes contribute to the evolution of one mode 0 5 10 15 20
through the mode couplings of the nonlinear interactions. X

However, in the present work, we keep only one eigenmode
(m,n)=(1,0). The reason is more practical than anything FIG. 2. Typical profiles of the fluctuations of the potentisblid
else—even for this case, much computer memory and time isurve and the pressurgotted curve
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when y, =0.01, the upper bound is abouk30 *(ps/L?) ism to models of a more complex nature, either fluid or ki-

X (cTe/eB) normalized in terms of the center pressure. As anetic, is left to a future work. Lower bound for the heat

reference for the case whenp =2, the direct numerical transport may also be interesting and the work is in progress.

simulation reports that the volume-averaged heat Qux1

[16]. Although, at presenty; is far from the experimental
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